732 research outputs found

    Perceived Barriers to Adherence to Standard Precautions among Healthcare Personnel Working in a Teaching Hospital of Palpa District, Nepal

    Get PDF
    Introduction: The present study aimed to find out the perceived barriers to adherence to standard precautions among healthcare personnel working in a teaching hospital of Palpa district. Methods: A descriptive cross-sectional study was conducted among 191 healthcare personnel in April 2019. Barriers to standard precautions adherence were evaluated using ‘Factors Influencing Adherence to Standard Precautions Scale’. Mann Whitney U test and Kruskal Wallis H test were applied to examine the association of selected demographic variables: age, educational background, duration of employment, working areas and having attended trainings related to standard precautions with the perceived barriers to standard precautions adherence. Results: The mean age of participants was 24.87±6.05 years. Most (85.3%) of participants were nurses.  19.9% and 52.4% of participants always performed hand hygiene before and after using personal protective equipment respectively. The subscale scores in leadership and culture of the institute were 14.86±4.21 (possible range 0-24) and 14.59±2.60 (possible range 0-20) respectively. Subscale scores in judgement and contextual cues were 17.49±3.46 (possible range 0-20) and 18.02±5 (possible range 0-24) respectively. Score in justification was 7.52±5.12 (possible range 0-28). Age, educational background and duration of employment had a statistically significant association with subscale scores on justification and perceived culture of the institution. Conclusion: The present study revealed that only 19.9% of the participants would perform hand hygiene before using gloves and 52.4% of participants would do it afterwards. Personal judgement, dependence on contextual cues and inadequate leadership skills were found to be the major barriers to adherence to standard precautions

    Comparative Study on Thresholding

    Get PDF
    Criterion based thresholding algorithms are simple and effective for two-level thresholding. However, if a multilevel thresholding is needed, the computational complexity will exponentially increase and the performance may become unreliable. In this approach, a novel and more effective method is used for multilevel thresholding by taking hierarchical cluster organization into account. Developing a dendogram of gray levels in the histogram of an image, based on the similarity measure which involves the inter-class variance of the clusters to be merged and the intra-class variance of the new merged cluster . The bottom-up generation of clusters employing a dendogram by the proposed method yields good separation of the clusters and obtains a robust estimate of the threshold. Such cluster organization will yield a clear separation between object and background even for the case of nearly unimodal or multimodal histogram. Since the hierarchical clustering method performs an iterative merging operation, it is extended to multilevel thresholding problem by eliminating grouping of clusters when the pixel values are obtained from the expected numbers of clusters. This paper gives a comparison on Otsu’s & Kwon’s criterion with hierarchical based multi-level thresholding

    Luminescence Properties of CaAl2O4:Eu3+, Gd3+ Phosphors Synthesized by Combustion Synthesis Method

    Full text link
    [EN] CaAl2O4:Eu3+ (1 mol.%) co-doped with varying concentration of Gd3+ (1, 2, 5, and 10 mol.%) were prepared by combustion synthesis method at 600 C and further annealed at 1000 ÂșC. All the compositions were investigated for their structural and photoluminescence properties. It was observed that both states of europium i.e. Eu3+ and Eu2+ were present and ratio of these states changes on heating at 1000 ÂșC. The materials synthesized at 600 ÂșC showed high intense peak around 440 nm due to presence of Eu2+ and less intense peaks in the red region which were due to presence of Eu3+. On annealing the compounds at 1000 ÂșC, intensity of peak around 440 nm decreases and intensity of peaks in the red region increases significantly. The 5D0 !7 F3 transition due to Eu3+ at 657 nm appears as the highest intensity peak. All co-doped samples annealed at 1000 ÂșC showed the higher intensity than the mono doped sample which is due to energy transfer from the Gd3+ to Eu3+. The second rare-earth ion (Gd3+) acts as sensitizer and enhances the photoluminescence intensity. The X-ray diffraction spectra reveal the monoclinic phase of CaAl2O4 in all the samples which showed that Eu3+ and Gd3+ do not change the crystalline structure of calcium aluminate.This work was supported by the Generalitat Valenciana through grant PROMETEUS 2009/2013 and the European Commission through Nano CIS project (FP7-PEOPLE-2010-IRSES ref. 269279).This work was supported by the Generalitat Valenciana through grant PROMETEUS 2009/2013 and the European Commission through Nano CIS project (FP7- PEOPLE-2010-IRSES ref. 269279).Verma, N.; Singh, K.; MarĂ­, B.; Mollar GarcĂ­a, MA.; Jindal, J. (2017). Luminescence Properties of CaAl2O4:Eu3+, Gd3+ Phosphors Synthesized by Combustion Synthesis Method. Acta Physica Polonica A. 132(4):1261-1264. https://doi.org/10.12693/APhysPolA.132.1261S12611264132

    Luminescence properties of the Eu2+ /Eu3 + activated Barium aluminate phosphors with varies Gd3+ concentration

    Full text link
    This is an Accepted Manuscript of an article published by Taylor & Francis in Transactions of the Indian Ceramic Society on 2015, available online: http://www.tandfonline.com/10.1080/0371750X.2015.1082932[EN] BaAl2O4:Eu2(+)/Eu3(+) (1mol %) co-doped with varying concentrations of Gd3(+) (1, 2, 5 and 10mol%) were prepared by combustion synthesis method at 600 degrees C. All the compositions were investigated for their structural and photoluminescence properties. Samples prepared in open atmosphere showed the presence of both Eu3(+) and Eu2(+) states which indicates the reduction of Eu3(+) to Eu2(+) during the preparation of these compounds. The prepared materials at 600 degrees C showed high intense broad peaks around 498nm corresponding to Eu2(+) and small peaks in the red region which are attributed to the presence of Eu3(+). In the 1000 degrees C annealed compounds, the intensity of the peak at 498nm got increased. The intensity of this broad band for BaAl2O4:Eu2(+)/Eu3(+)(1mol%):Gd3(+)(1mol%) was three times than that of BaAl2O4:Eu2(+)/Eu3(+)(1mol%). Thus second rare earth ion (Gd3(+)) acted as a good sensitizer and enhanced the photoluminescence intensity. The XRD spectra revealed the presence of hexagonal phase of BaAl2O4 as main phase and a small amount of a mixed phase Ba O! 6.6 Al2O3. Doping of Eu3(+), Gd3(+) did not change the crystalline structure of barium aluminate (BaAl2O4).This work was supported by the Generalitat Valenciana through grant PROMETEUS 2009/2013 and the European Commission through Nano CIS project (FP7-PEOPLE2010-IRSES ref. 269279).MarĂ­, B.; Singh, K.; Verma, N.; Mollar GarcĂ­a, MA.; Jindal, J. (2015). Luminescence properties of the Eu2+ /Eu3 + activated Barium aluminate phosphors with varies Gd3+ concentration. Transactions of the Indian Ceramic Society. 74(3):157-161. https://doi.org/10.1080/0371750X.2015.1082932S15716174

    Effective electrochemical n-type doping of ZnO thin films for optoelectronic window applications

    Full text link
    [EN] An effective n-type doping of ZnO thin films electrochemically synthetized was achieved by varying the chloride ion concentration in the starting electrolyte. The ratio between chloride and zinc cations was varied between 0 and 2 while the zinc concentration in the solution was kept constant. When the concentration of chloride in the bath increases an effective n-type doping of ZnO films takes place. n-type doping is evidenced by the rise of donors concentration, obtained from Mott-Schottky measurements, as well as from the blueshift observed in the optical gap owing to the Burstein-Moss effect.This work was supported by Spanish Government through MCINN grant MAT2009-14625-C03-03 and European Commission through NanoCIS project FP7-PEOPLE-2010-IRSES (ref. 269279).Cembrero Coca, P.; Mollar GarcĂ­a, MA.; Singh, K.; MarĂ­ Soucase, B. (2013). Effective electrochemical n-type doping of ZnO thin films for optoelectronic window applications. Journal of Solid State Electrochemistry. 2(7):Q108-Q112. https://doi.org/10.1149/2.023307jssSQ108Q11227Guillïżœn-Santiago, A., de la L. Olvera, M., Maldonado, A., Asomoza, R., & Acosta, D. R. (2004). Electrical, structural and morphological properties of chemically sprayed F-doped ZnO films: effect of the ageing-time of the starting solution, solvent and substrate temperature. physica status solidi (a), 201(5), 952-959. doi:10.1002/pssa.200306727Oba, F., Choi, M., Togo, A., & Tanaka, I. (2011). Point defects in ZnO: an approach from first principles. Science and Technology of Advanced Materials, 12(3), 034302. doi:10.1088/1468-6996/12/3/034302Oh, B.-Y., Jeong, M.-C., Lee, W., & Myoung, J.-M. (2005). Properties of transparent conductive ZnO:Al films prepared by co-sputtering. Journal of Crystal Growth, 274(3-4), 453-457. doi:10.1016/j.jcrysgro.2004.10.026Manouni, A. E., ManjĂłn, F. J., Mollar, M., MarĂ­, B., GĂłmez, R., LĂłpez, M. C., & Ramos-Barrado, J. R. (2006). Effect of aluminium doping on zinc oxide thin films grown by spray pyrolysis. Superlattices and Microstructures, 39(1-4), 185-192. doi:10.1016/j.spmi.2005.08.041Kato, H., Sano, M., Miyamoto, K., & Yao, T. (2002). Growth and characterization of Ga-doped ZnO layers on a-plane sapphire substrates grown by molecular beam epitaxy. Journal of Crystal Growth, 237-239, 538-543. doi:10.1016/s0022-0248(01)01972-8Ye, J. D., Gu, S. L., Zhu, S. M., Liu, S. M., Zheng, Y. D., Zhang, R., & Shi, Y. (2005). Fermi-level band filling and band-gap renormalization in Ga-doped ZnO. Applied Physics Letters, 86(19), 192111. doi:10.1063/1.1928322Morinaga, Y., Sakuragi, K., Fujimura, N., & Ito, T. (1997). Effect of Ce doping on the growth of ZnO thin films. Journal of Crystal Growth, 174(1-4), 691-695. doi:10.1016/s0022-0248(97)00045-6Castañeda, L., GarcĂ­a-Valenzuela, A., Zironi, E. P., Cañetas-Ortega, J., Terrones, M., & Maldonado, A. (2006). Formation of indium-doped zinc oxide thin films using chemical spray techniques: The importance of acetic acid content in the aerosol solution and the substrate temperature for enhancing electrical transport. Thin Solid Films, 503(1-2), 212-218. doi:10.1016/j.tsf.2005.12.263MarĂ­, B., Sahal, M., Mollar, M. A., Cerqueira, F. M., & Samantilleke, A. P. (2012). p-Type behaviour of electrodeposited ZnO:Cu films. Journal of Solid State Electrochemistry, 16(6), 2261-2265. doi:10.1007/s10008-011-1635-xHu, J., & Gordon, R. G. (1991). Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous silicon solar cells. Solar Cells, 30(1-4), 437-450. doi:10.1016/0379-6787(91)90076-2Xu, H. Y., Liu, Y. C., Mu, R., Shao, C. L., Lu, Y. M., Shen, D. Z., & Fan, X. W. (2005). F-doping effects on electrical and optical properties of ZnO nanocrystalline films. Applied Physics Letters, 86(12), 123107. doi:10.1063/1.1884256Cui, J. B., Soo, Y. C., Chen, T. P., & Gibson, U. J. (2008). Low-Temperature Growth and Characterization of Cl-Doped ZnO Nanowire Arrays. The Journal of Physical Chemistry C, 112(12), 4475-4479. doi:10.1021/jp710855zTchelidze, T., Chikoidze, E., Gorochov, O., & Galtier, P. (2007). Perspectives of chlorine doping of ZnO. Thin Solid Films, 515(24), 8744-8747. doi:10.1016/j.tsf.2007.04.003Chikoidze, E., Nolan, M., Modreanu, M., Sallet, V., & Galtier, P. (2008). Effect of chlorine doping on electrical and optical properties of ZnO thin films. Thin Solid Films, 516(22), 8146-8149. doi:10.1016/j.tsf.2008.04.076Rousset, J., Saucedo, E., & Lincot, D. (2009). Extrinsic Doping of Electrodeposited Zinc Oxide Films by Chlorine for Transparent Conductive Oxide Applications. Chemistry of Materials, 21(3), 534-540. doi:10.1021/cm802765cGordon, R. G. (2000). Criteria for Choosing Transparent Conductors. MRS Bulletin, 25(8), 52-57. doi:10.1557/mrs2000.151Yi, G.-C., Wang, C., & Park, W. I. (2005). ZnO nanorods: synthesis, characterization and applications. Semiconductor Science and Technology, 20(4), S22-S34. doi:10.1088/0268-1242/20/4/003Huang, M. H., Wu, Y., Feick, H., Tran, N., Weber, E., & Yang, P. (2001). Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport. Advanced Materials, 13(2), 113-116. doi:10.1002/1521-4095(200101)13:23.0.co;2-hWang, X., Summers, C. J., & Wang, Z. L. (2004). Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays. Nano Letters, 4(3), 423-426. doi:10.1021/nl035102cPark, W. I., Kim, D. H., Jung, S.-W., & Yi, G.-C. (2002). Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Applied Physics Letters, 80(22), 4232-4234. doi:10.1063/1.1482800DavidovĂĄ, M., NachtigallovĂĄ, D., BulĂĄnek, R., & Nachtigall, P. (2003). Characterization of the Cu+Sites in High-Silica Zeolites Interacting with the CO Molecule:  Combined Computational and Experimental Study. The Journal of Physical Chemistry B, 107(10), 2327-2332. doi:10.1021/jp026989oBludskĂœ, O., Nachtigall, P., Čičmanec, P., Knotek, P., & BulĂĄnek, R. (2005). Characterization of the Cu+ sites in MFI zeolites: combined computational and experimental study. Catalysis Today, 100(3-4), 385-389. doi:10.1016/j.cattod.2004.09.070LĂ©vy-ClĂ©ment, C., Tena-Zaera, R., Ryan, M. A., Katty, A., & Hodes, G. (2005). CdSe-Sensitized p-CuSCN/Nanowire n-ZnO Heterojunctions. Advanced Materials, 17(12), 1512-1515. doi:10.1002/adma.200401848Könenkamp, R., Word, R. C., & Godinez, M. (2005). Ultraviolet Electroluminescence from ZnO/Polymer Heterojunction Light-Emitting Diodes. Nano Letters, 5(10), 2005-2008. doi:10.1021/nl051501rMentzen, B. F., & Bergeret, G. (2007). Crystallographic Determination of the Positions of the Copper Cations in Zeolite MFI. The Journal of Physical Chemistry C, 111(34), 12512-12516. doi:10.1021/jp075452dIzaki, M., & Omi, T. (1996). Transparent zinc oxide films prepared by electrochemical reaction. Applied Physics Letters, 68(17), 2439-2440. doi:10.1063/1.116160Gu, Z. H. (1999). Electrochemical Deposition of ZnO Thin Films on Tin-Coated Glasses. Journal of The Electrochemical Society, 146(1), 156. doi:10.1149/1.1391579Peulon, S., & Lincot, D. (1996). Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films. Advanced Materials, 8(2), 166-170. doi:10.1002/adma.19960080216Elias, J., Tena-Zaera, R., & LĂ©vy-ClĂ©ment, C. (2007). Electrodeposition of ZnO nanowires with controlled dimensions for photovoltaic applications: Role of buffer layer. Thin Solid Films, 515(24), 8553-8557. doi:10.1016/j.tsf.2007.04.027PauportĂ©, T., & Lincot, D. (2001). Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition II—Mechanistic aspects. Journal of Electroanalytical Chemistry, 517(1-2), 54-62. doi:10.1016/s0022-0728(01)00674-xElias, J., Tena-Zaera, R., & LĂ©vy-ClĂ©ment, C. (2008). Effect of the Chemical Nature of the Anions on the Electrodeposition of ZnO Nanowire Arrays. The Journal of Physical Chemistry C, 112(15), 5736-5741. doi:10.1021/jp7120092MarĂ­, B., Tortosa, M., Mollar, M., BoscĂ , J. V., & Cui, H. N. (2010). Electrodeposited ZnCdO thin films as conducting optical layer for optoelectronic devices. Optical Materials, 32(11), 1423-1426. doi:10.1016/j.optmat.2010.05.009Cembrero, J., Busquets-Mataix, D., RayĂłn, E., Pascual, M., PĂ©rez-Puig, M. A., & MarĂ­, B. (2013). Control parameters on the fabrication of ZnO hollow nanocolumns. Materials Science in Semiconductor Processing, 16(1), 211-216. doi:10.1016/j.mssp.2012.04.014Cardon, F., & Gomes, W. P. (1978). On the determination of the flat-band potential of a semiconductor in contact with a metal or an electrolyte from the Mott-Schottky plot. Journal of Physics D: Applied Physics, 11(4), L63-L67. doi:10.1088/0022-3727/11/4/003Windisch, C. F., & Exarhos, G. J. (2000). Mott–Schottky analysis of thin ZnO films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 18(4), 1677-1680. doi:10.1116/1.582406Mora-SerĂł, I., Fabregat-Santiago, F., Denier, B., Bisquert, J., Tena-Zaera, R., Elias, J., & LĂ©vy-ClĂ©ment, C. (2006). Determination of carrier density of ZnO nanowires by electrochemical techniques. Applied Physics Letters, 89(20), 203117. doi:10.1063/1.2390667Roth, A. P., Webb, J. B., & Williams, D. F. (1982). Band-gap narrowing in heavily defect-doped ZnO. Physical Review B, 25(12), 7836-7839. doi:10.1103/physrevb.25.7836Kim, C. E., Moon, P., Kim, S., Myoung, J.-M., Jang, H. W., Bang, J., & Yun, I. (2010). Effect of carrier concentration on optical bandgap shift in ZnO:Ga thin films. Thin Solid Films, 518(22), 6304-6307. doi:10.1016/j.tsf.2010.03.042Baer, W. S. (1967). Faraday Rotation in ZnO: Determination of the Electron Effective Mass. Physical Review, 154(3), 785-789. doi:10.1103/physrev.154.785Aghamalyan, N. R., Kafadaryan, E. A., Hovsepyan, R. K., & Petrosyan, S. I. (2004). Absorption and reflection analysis of transparent conductive Ga-doped ZnO films. Semiconductor Science and Technology, 20(1), 80-85. doi:10.1088/0268-1242/20/1/01

    Anodic Oxide Films on Niobium and Tantalum in Different Aqueous Electrolytes and Their Impedance Characteristics

    Full text link
    [EN] The anodic oxide films were prepared on the niobium and tantalum in aqueous electrolyte mixtures containing 1 M CH3COOH + 1 M H3PO4 or 1 M CH3COOH + 1 vol.% HF or 1 M CH3COOH + 1 M H3PO4 + 1 vol.% HF at 30 V for 30 min. The barrier films were obtained on both niobium and tantalum surfaces in all electrolyte mixtures except niobium oxide film formed in 1 M CH3COOH + 1 vol.% HF which is porous in nature. The anodic oxide "pedance spectroscopy at open-circuit potential on Nb and Ta was applied and obtained data were analyzed by fitting with four different equivalent circuits.Verma, N.; Singh, K.; MarĂ­ Soucase, B.; Mollar GarcĂ­a, MA.; Jindal, J. (2016). Anodic Oxide Films on Niobium and Tantalum in Different Aqueous Electrolytes and Their Impedance Characteristics. Acta Physica Polonica A. 129:297-303. doi:10.12693/APhysPolA.129.297S29730312

    Nonlinear spinor field in cosmology

    Full text link
    Within the scope of Bianchi type VI (BVI) model the self-consistent system of nonlinear spinor and gravitational fields is considered. Exact self-consistent solutions to the spinor and gravitational field equations are obtained for some special choice of spatial inhomogeneity and nonlinear spinor term. The role of inhomogeneity in the evolution of spinor and gravitational field is studied. Oscillatory mode of expansion of the BVI universe is obtained for some special choice of spinor field nonlinearity.Comment: RevTex4, 19 pages, 4 figure

    Variability in an effector gene promoter of a necrotrophic fungal pathogen dictates epistasis and effector-triggered susceptibility in wheat

    Get PDF
    The fungus Parastagonospora nodorum uses proteinaceous necrotrophic effectors (NEs) to induce tissue necrosis on wheat leaves during infection, leading to the symptoms of septoria nodorum blotch (SNB). The NEs Tox1 and Tox3 induce necrosis on wheat possessing the dominant susceptibility genes Snn1 and Snn3B1/Snn3D1, respectively. We previously observed that Tox1 is epistatic to the expression of Tox3 and a quantitative trait locus (QTL) on chromosome 2A that contributes to SNB resistance/susceptibility. The expression of Tox1 is significantly higher in the Australian strain SN15 compared to the American strain SN4. Inspection of the Tox1 promoter region revealed a 401 bp promoter genetic element in SN4 positioned 267 bp upstream of the start codon that is absent in SN15, called PE401. Analysis of the world-wide P. nodorum population revealed that a high proportion of Northern Hemisphere isolates possess PE401 whereas the opposite was observed in representative P. nodorum isolates from Australia and South Africa. The presence of PE401 removed the epistatic effect of Tox1 on the contribution of the SNB 2A QTL but not Tox3. PE401 was introduced into the Tox1 promoter regulatory region in SN15 to test for direct regulatory roles. Tox1 expression was markedly reduced in the presence of PE401. This suggests a repressor molecule(s) binds PE401 and inhibits Tox1 transcription. Infection assays also demonstrated that P. nodorum which lacks PE401 is more pathogenic on Snn1 wheat varieties than P. nodorum carrying PE401. An infection competition assay between P. nodorum isogenic strains with and without PE401 indicated that the higher Tox1-expressing strain rescued the reduced virulence of the lower Tox1-expressing strain on Snn1 wheat. Our study demonstrated that Tox1 exhibits both ‘selfish’ and ‘altruistic’ characteristics. This offers an insight into a complex NE-NE interaction that is occurring within the P. nodorum population. The importance of PE401 in breeding for SNB resistance in wheat is discussed
    • 

    corecore